On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations
DOI10.1016/j.amc.2015.04.003zbMath1410.34218OpenAlexW2007812467MaRDI QIDQ1643316
Publication date: 19 June 2018
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2015.04.003
asymptotic stabilitynonlinear simulationmultiplicative white noisesstochastic multi-step methodsthe one-sided Lipschitz condition
Stability theory of functional-differential equations (34K20) Stochastic functional-differential equations (34K50) Computational methods for stochastic equations (aspects of stochastic analysis) (60H35)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A note on order of convergence of numerical method for neutral stochastic functional differential equations
- Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation
- Mean-square stability of semi-implicit Euler method for nonlinear neutral stochastic delay differential equations
- Exponential stability in mean square of neutral stochastic differential functional equations
- Exponential stability of equidistant Euler-Maruyama approximations of stochastic differential delay equations
- On the \(p\)th moment exponential stability criteria of neutral stochastic functional differential equations
- Stability of functional differential equations
- Higher-order implicit strong numerical schemes for stochastic differential equations
- Adams methods for the efficient solution of stochastic differential equations with additive noise
- Adams-type methods for the numerical solution of stochastic ordinary differential equations
- Discrete-time approximations of stochastic delay equations: the Milstein scheme.
- On exponential mean-square stability of two-step Maruyama methods for stochastic delay differential equations
- On the exponential stability in mean square of neutral stochastic functional differential equations
- One-step approximations for stochastic functional differential equations
- Mean square convergence of one-step methods for neutral stochastic differential delay equations
- Exponential stability in \(p\)-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations
- Numerical Solutions of Neutral Stochastic Functional Differential Equations
- Razumikhin-Type Theorems on Exponential Stability of Neutral Stochastic Differential Equations
- The ⊝-Maruyama scheme for stochastic functional differential equations with distributed memory term *
- Numerical Solutions of Stochastic Functional Differential Equations
- Simulations of Two-Step Maruyama Methods for Nonlinear Stochastic Delay Differential Equations
- Multi-Step Maruyama Methods for Stochastic Delay Differential Equations
- Multistep methods for SDEs and their application to problems with small noise
- Numerical Analysis of Stochastic Schemes in Geophysics
This page was built for publication: On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations