Sharp weighted bounds for multilinear fractional type operators associated with Bergman projection
From MaRDI portal
Publication:1644415
DOI10.1155/2018/3485962zbMath1502.42015OpenAlexW2805560947MaRDI QIDQ1644415
Publication date: 21 June 2018
Published in: Journal of Function Spaces (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2018/3485962
multiple weightsfractional maximal functionsharp weighted estimatesBergman type operatormultilinear fractional Bergman operator
Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Fractional derivatives and integrals (26A33) Bergman spaces and Fock spaces (30H20) Operator theory and harmonic analysis (47B90)
Cites Work
- Unnamed Item
- Unnamed Item
- Sharp weighted bounds involving \(A_\infty\)
- Sharp Forelli-Rudin estimates and the norm of the Bergman projection
- On multilinear fractional strong maximal operator associated with rectangles and multiple weights
- A study of the matrix Carleson embedding theorem with applications to sparse operators
- Sharp weighted bounds for fractional integral operators
- Weighted boundedness of maximal functions and fractional Bergman operators
- Sharp Békollé estimates for the Bergman projection
- Inégalités à poids pour le projecteur de Bergman dans la boule unité de $C^{n}$
- Weighted Norm Inequalities for Fractional Integrals
- A Sharp Constant for the Bergman Projection
- Sharp weighted inequalities for multilinear fractional maximal operators and fractional integrals
- Sharp Norm Estimates for the Bergman Operator From Weighted Mixed-norm Spaces to Weighted Hardy Spaces