A classical \(q\)-hypergeometric approach to the \(A_2^{(2)}\) standard modules
From MaRDI portal
Publication:1644644
DOI10.1007/978-3-319-68376-8_39zbMath1391.33036arXiv1811.09323OpenAlexW3106028143MaRDI QIDQ1644644
Publication date: 21 June 2018
Full work available at URL: https://arxiv.org/abs/1811.09323
Rogers-Ramanujan identitiesaffine Lie algebrasbasic hypergeometric seriesBailey pairsCapparelli identities
Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67) Basic hypergeometric functions in one variable, ({}_rphi_s) (33D15)
Related Items (2)
On \(q\)-series for principal characters of standard \(A_2^{( 2 )}\)-modules ⋮ Andrews-Gordon type series for the level 5 and 7 standard modules of the affine Lie algebra $A^{(2)}_2$
This page was built for publication: A classical \(q\)-hypergeometric approach to the \(A_2^{(2)}\) standard modules