Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality
From MaRDI portal
Publication:1647375
DOI10.1016/j.aim.2018.01.013zbMath1432.16022arXiv1310.1972OpenAlexW2964345537WikidataQ129638710 ScholiaQ129638710MaRDI QIDQ1647375
Michael Ehrig, Catharina Stroppel
Publication date: 26 June 2018
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1310.1972
Kazhdan-Lusztig polynomialscategory \(\mathcal{O}\)categorificationskew Howe dualitycoideal algebras
Endomorphism rings; matrix rings (16S50) Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10)
Related Items
Stability of 𝚤canonical bases of irreducible finite type of real rank one ⋮ The bar involution for quantum symmetric pairs – hidden in plain sight ⋮ Pseudo-symmetric pairs for Kac-Moody algebras ⋮ The bar involution for quantum symmetric pairs ⋮ Categorification of quantum symmetric pairs. I ⋮ Schur-Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra ⋮ Compact Schur-Weyl duality: real Lie groups and the cyclotomic Brauer algebra ⋮ Compact Schur-Weyl duality and the type B/C VW-algebra ⋮ Canonical bases arising from quantum symmetric pairs ⋮ A Fock space model for decomposition numbers for quantum groups at roots of unity ⋮ Branching rules for finite-dimensional \(\mathcal {U}_{q}(\mathfrak {su}(3))\)-representations with respect to a right coideal subalgebra ⋮ Quasi-solvable lattice models for and Demazure atoms and characters ⋮ Suzuki functor at the critical level ⋮ Braid group actions from categorical symmetric Howe duality on deformed Webster algebras ⋮ \(Q\)-Schur algebras corresponding to Hecke algebras of type \textsf{B} ⋮ Kazhdan-Lusztig theory of super type D and quantum symmetric pairs ⋮ The degenerate affine walled Brauer algebra ⋮ Based modules over the \(\imath\) quantum group of type AI ⋮ Annular webs and Levi subalgebras ⋮ Universal K-matrices for quantum Kac-Moody algebras ⋮ Blocks of the Brauer category over the complex field ⋮ Cells in modified \(\imath\)quantum groups of type AIII and related Schur algebras ⋮ Quantum symmetric pairs ⋮ Generalized Schur-Weyl dualities for quantum affine symmetric pairs and orientifold KLR algebras ⋮ Tonal partition algebras: fundamental and geometrical aspects of representation theory ⋮ Affine flag varieties and quantum symmetric pairs ⋮ Polynomial functors and two-parameter quantum symmetric pairs ⋮ Categorification: tangle invariants and TQFTs ⋮ Affine periplectic Brauer algebras ⋮ Quiver varieties and symmetric pairs ⋮ Universal K-matrix for quantum symmetric pairs ⋮ Affine and degenerate affine BMW algebras: the center ⋮ Standard Koszul standardly stratified algebras ⋮ Quasitriangular coideal subalgebras of Uq(g) in terms of generalized Satake diagrams ⋮ \(\mathfrak{sl}_3\)-web bases, intermediate crystal bases and categorification ⋮ Webs and $q$-Howe dualities in types $\mathbf {BCD}$ ⋮ Defining relations of quantum symmetric pair coideal subalgebras ⋮ Affine Brauer category and parabolic category \(\mathcal{O}\) in types \(B, C, D\) ⋮ Geometric Schur duality of classical type ⋮ Geometric Schur duality of classical type, II ⋮ \(G(\ell,k,d)\)-modules via groupoids ⋮ Walled Brauer algebras as idempotent truncations of level 2 cyclotomic quotients. ⋮ On representations of $U’_q\mathfrak {so}_n$ ⋮ Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians ⋮ Representations of twisted Yangians of types B, C, D. II ⋮ 𝔤𝔩n-webs, categorification and Khovanov–Rozansky homologies ⋮ Symmetric pairs for Nichols algebras of diagonal type via star products ⋮ The affine VW supercategory ⋮ Semisimplicity of the \textit{DS} functor for the orthosymplectic Lie superalgebra ⋮ A topological origin of quantum symmetric pairs ⋮ Defining relations for quantum symmetric pair coideals of Kac-Moody type ⋮ Factorisation of quasi \(K\)-matrices for quantum symmetric pairs ⋮ Cartan subalgebras for quantum symmetric pair coideals ⋮ On geometrically defined extensions of the Temperley-Lieb category in the Brauer category ⋮ Geometric Howe dualities of finite type
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Categorification of tensor powers of the vector representation of \(U_q(\mathfrak{gl}(1| 1))\)
- Gradings on walled Brauer algebras and Khovanov's arc algebra
- Quantum symmetric Kac-Moody pairs
- Webs and quantum skew Howe duality
- Representations of Hecke algebras at roots of unity.
- A quantum analogue of the first fundamental theorem of classical invariant theory
- Quantum symmetric pairs and representations of double affine Hecke algebras of type \(C^\vee C_n\).
- Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians
- Lectures on algebraic categorification
- The semisimplicity of \(\omega_f^n\)
- Khovanov homology is a skew Howe 2-representation of categorified quantum \(\mathfrak{sl}_m\)
- Highest weight categories arising from Khovanov's diagram algebra. II: Koszulity
- A categorification of finite-dimensional irreducible representations of quantum \({\mathfrak{sl}_2}\) and their tensor products
- Schur-Weyl duality for higher levels
- Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras.
- On the structure of Brauer's centralizer algebras
- Duality between \(\mathfrak{sl}_n(\mathbb C)\) and the degenerate affine Hecke algebra
- Category \({\mathcal O}\): gradings and translation functors.
- Quantum symmetric pairs and their zonal spherical functions.
- Categorified skew Howe duality and comparison of knot homologies
- Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors
- Quasi-hereditary extension algebras.
- A structure theorem for Harish-Chandra bimodules via coinvariants and Golod rings
- Cellular algebras
- Young's orthogonal form for Brauer's centralizer algebra
- Affine and degenerate affine BMW algebras: actions on tensor space
- Affine and degenerate affine BMW algebras: the center
- A criterion on the semisimple Brauer algebras.
- A pairing in homology and the category of linear complexes of tilting modules for a quasi-hereditary algebra (with an appendix by Catharina Stroppel).
- A characteristic free approach to Brauer algebras
- Highest weight categories arising from Khovanov’s diagram algebra III: category 𝒪
- A diagrammatic approach to categorification of quantum groups II
- Canonical bases and KLR-algebras
- Singular Soergel Bimodules
- Topology of two-row Springer fibers for the even orthogonal and symplectic group
- A geometric characterisation of the blocks of the Brauer algebra
- The bar involution for quantum symmetric pairs
- Braided symmetric and exterior algebras
- Projective-injective modules, Serre functors and symmetric algebras
- The blocks of the Brauer algebra in characteristic zero
- A diagrammatic approach to categorification of quantum groups I
- A Lie-theoretic construction of some representations of the degenerate affine and double affine Hecke algebras of type 𝐵𝐶_{𝑛}
- Quadratic duals, Koszul dual functors, and applications
- Symmetry, Representations, and Invariants
- A combinatorial approach to functorial quantum sl<sub xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><i>k</i></sub> knot invariants
- Categories of highest weight modules: applications to classical Hermitian symmetric pairs
- GENERALIZED TEMPERLEY–LIEB ALGEBRAS AND DECORATED TANGLES
- Koszul Gradings on Brauer Algebras
- SEMISIMPLICITY OF HECKE AND (WALLED) BRAUER ALGEBRAS
- Sutured annular Khovanov-Rozansky homology
- Knot invariants and higher representation theory
- Categories with projective functors
- Kategorie O , Perverse Garben Und Moduln Uber Den Koinvariantez Zur Weylgruppe
- Twisting functors on 𝒪
- Koszul Duality Patterns in Representation Theory
- A GRAPHICAL DESCRIPTION OF (Dn,An−1) KAZHDAN–LUSZTIG POLYNOMIALS
- 2-row Springer Fibres and Khovanov Diagram Algebras for Type D
- Twisted Yangians, twisted quantum loop algebras and affine Hecke algebras of type $BC$
- Cyclotomic Nazarov-Wenzl Algebras
- \(G(\ell,k,d)\)-modules via groupoids