Parameter estimation in SDEs via the Fokker-Planck equation: likelihood function and adjoint based gradient computation
DOI10.1016/J.JMAA.2018.05.048zbMath1390.60210OpenAlexW2804977737WikidataQ129815108 ScholiaQ129815108MaRDI QIDQ1650494
Barbara Pedretscher, Barbara Kaltenbacher
Publication date: 4 July 2018
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2018.05.048
stochastic differential equationparameter identificationlikelihood functionstate space modeladjoint method
Stochastic ordinary differential equations (aspects of stochastic analysis) (60H10) PDEs with randomness, stochastic partial differential equations (35R60) Fokker-Planck equations (35Q84)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A decision-making Fokker-Planck model in computational neuroscience
- Nonparametric estimation of scalar diffusions based on low frequency data
- On parameter identification in stochastic differential equations by penalized maximum likelihood
- Integration based profile likelihood calculation for PDE constrained parameter estimation problems
This page was built for publication: Parameter estimation in SDEs via the Fokker-Planck equation: likelihood function and adjoint based gradient computation