A Faber-Krahn inequality for solutions of Schrödinger's equation on Riemannian manifolds
From MaRDI portal
Publication:1651360
DOI10.1007/s12220-017-9854-8zbMath1404.35117OpenAlexW2608809504WikidataQ115376801 ScholiaQ115376801MaRDI QIDQ1651360
Emerson A. M. Abreu, Ezequiel R. Barbosa
Publication date: 12 July 2018
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12220-017-9854-8
Estimates of eigenvalues in context of PDEs (35P15) Elliptic equations on manifolds, general theory (58J05) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05)
Cites Work
- A Faber-Krahn inequality for solutions of Schrödinger's equation
- Functions of bounded variation and rearrangements
- Variational methods for non-local operators of elliptic type
- First eigenvalue for the \(p\)-Laplace operator
- Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche
- Inégalités isopérimétriques et applications
- A correction to: Sobolev and isoperimetric inequalities for riemannian submanifolds
- Symmetrization, symmetric stable processes, and Riesz capacities
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A Faber-Krahn inequality for solutions of Schrödinger's equation on Riemannian manifolds