Archimedean Godement-Jacquet zeta integrals and test functions
From MaRDI portal
Publication:1651989
DOI10.1016/J.JNT.2018.03.020zbMath1402.22013OpenAlexW2802612761MaRDI QIDQ1651989
Publication date: 11 July 2018
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2018.03.020
zeta integralstheta correspondencetest functionsjoint harmonicslowest \(K\)-typesprincipal \(L\)-functions
Theta series; Weil representation; theta correspondences (11F27) Representations of Lie and linear algebraic groups over real fields: analytic methods (22E45) Zeta functions and (L)-functions (11S40)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Correspondance de Howe pour les paires reductives duales: Quelques calculs dans le cas archimédien. (Howe correspondence for dual reductive pairs: Some calculations in the Archimedean case)
- The unitary dual of \(\mathrm{GL}(n)\) over an archimedean field
- Reducibility of generalized principal series representations
- Representations of real reductive Lie groups
- On some explicit formulas in the theory of Weil representation
- Sur certains groupes d'opérateurs unitaires
- Zeta functions of simple algebras
- Transcending Classical Invariant Theory
- Canonical Extensions of Harish-Chandra Modules to Representations of G
- Harmonic Analysis in Phase Space. (AM-122)
- THE THETA CORRESPONDENCE OVER ℝ
- The archimedean Whittaker functions on GL(3)
This page was built for publication: Archimedean Godement-Jacquet zeta integrals and test functions