Axiom of infinite choice, transversal ordered spring spaces and fixed points
DOI10.1186/s13663-018-0635-2zbMath1464.54027OpenAlexW2796199988WikidataQ114007881 ScholiaQ114007881MaRDI QIDQ1654443
Publication date: 8 August 2018
Published in: Fixed Point Theory and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1186/s13663-018-0635-2
fixed pointspartially ordered metric spacespartially ordered spacesaxiom of infinite choiceincreasing inductivenessincreasing mappingslemma of infinite maximalitylower and upper (distribution) functionsnoncomplete spacesspaces with the non-numerical transversalstransversal edges (upper, lower, and middle) spacestransversal ordered spring spaces
Fixed-point theorems (47H10) Fixed-point and coincidence theorems (topological aspects) (54H25) Ordered sets (06A99) Axiom of choice and related propositions (03E25)
Related Items (1)
Cites Work
- Some generalization of an abstract contraction mapping principle
- The Fixed Point Property and Cartesian Products
- The Axiom of Choice, Fixed Point Theorems, and Inductive Ordered Sets
- Characterizations of Inductive Posets with Applications
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Axiom of infinite choice, transversal ordered spring spaces and fixed points