Small-time fluctuations for sub-Riemannian diffusion loops
From MaRDI portal
Publication:1656534
DOI10.1007/s00440-017-0788-7zbMath1396.58026arXiv1606.00422OpenAlexW3100788547WikidataQ59614232 ScholiaQ59614232MaRDI QIDQ1656534
Publication date: 10 August 2018
Published in: Probability Theory and Related Fields (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1606.00422
Diffusion processes and stochastic analysis on manifolds (58J65) Stochastic calculus of variations and the Malliavin calculus (60H07) Hypoelliptic equations (35H10) Sub-Riemannian geometry (53C17)
Related Items
Heat trace asymptotics on equiregular sub-Riemannian manifolds ⋮ Small-time fluctuations for the bridge in a model class of hypoelliptic diffusions of weak Hörmander type ⋮ Hypoelliptic operators in geometry. Abstracts from the workshop held May 21--26, 2023 ⋮ Cartan connections for stochastic developments on sub-Riemannian manifolds
Cites Work
- Unnamed Item
- Unnamed Item
- Large deviations and the Malliavin calculus
- Décroissance exponentielle du noyau de la chaleur sur la diagonale. I. (Exponential decay of the heat kernel over the diagonal. I)
- Exponential decay of the heat kernel over the diagonal. II
- Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels
- Asymptotic expansion of the hypoelliptic heat kernel on the diagonal
- Hypoelliptic differential operators and nilpotent groups
- Small-time heat kernel asymptotics at the sub-Riemannian cut locus
- Graded Approximations and Controllability Along a Trajectory
- Natural Operations on Differential Forms
- Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus
- Développement asymptotique de la densité d’une diffusion dégénérée
- SHORT TIME FULL ASYMPTOTIC EXPANSION OF HYPOELLIPTIC HEAT KERNEL AT THE CUT LOCUS