Hybrid fundamental solution based finite element method for axisymmetric potential problems
From MaRDI portal
Publication:1657135
DOI10.1016/j.enganabound.2018.03.009zbMath1403.65149OpenAlexW2794665018MaRDI QIDQ1657135
Xiaodan Miao, Peichao Li, Junchen Zhou, Ke-Yong Wang
Publication date: 13 August 2018
Published in: Engineering Analysis with Boundary Elements (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.enganabound.2018.03.009
finite element methodfundamental solutionmultiply connected domainaxisymmetric potential problemmodified variational functional
Related Items (3)
Hybrid Trefftz polygonal elements for heat conduction problems with inclusions/voids ⋮ A hybrid fundamental-solution-based 8-node element for axisymmetric elasticity problems ⋮ A Hybrid Fundamental-Solution-Based Finite Element Method for Transient Heat Conduction Analysis of Two-Dimensional Orthotropic Materials
Cites Work
- Unnamed Item
- Unnamed Item
- Hybrid fundamental solution based finite element method: theory and applications
- Optimal positioning of anodes and virtual sources in the design of cathodic protection systems using the method of fundamental solutions
- The method of fundamental solutions for inverse boundary value problems associated with the two-dimensional biharmonic equation
- On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations
- A meshless model for transient heat conduction in functionally graded materials
- A fundamental solution based FE model for thermal analysis of nanocomposites
- The method of fundamental solutions for axisymmetric potential problems
- The method of fundamental solutions for heat conduction in layered materials
- The Method of Fundamental Solutions for Stationary Heat Conduction Problems in Rotationally Symmetric Domains
This page was built for publication: Hybrid fundamental solution based finite element method for axisymmetric potential problems