A variational expectation-maximization algorithm for temporal data clustering
DOI10.1016/j.csda.2016.05.007zbMath1466.62061OpenAlexW2399891531MaRDI QIDQ1658997
Gérard Govaert, Allou Samé, Patrice Aknin, Hani El Assaad
Publication date: 15 August 2018
Published in: Computational Statistics and Data Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.csda.2016.05.007
EM algorithmclusteringKalman filtermaximum likelihoodmixture modelvariational approximationdynamic latent variable modeltemporal data clustering
Computational methods for problems pertaining to statistics (62-08) Classification and discrimination; cluster analysis (statistical aspects) (62H30)
Related Items (1)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A maximum likelihood methodology for clusterwise linear regression
- Block clustering with Bernoulli mixture models: comparison of different approaches
- Estimating the dimension of a model
- A mixture likelihood approach for generalized linear models
- An introduction to variational methods for graphical models
- Functional data analysis.
- Latent Class Analysis of Survey Error
This page was built for publication: A variational expectation-maximization algorithm for temporal data clustering