Cuspidal representations in the cohomology of Deligne-Lusztig varieties for \(\mathrm{GL}(2)\) over finite rings
DOI10.1007/s11856-018-1717-xzbMath1400.20040OpenAlexW2806726302MaRDI QIDQ1659551
Tetsushi Ito, Takahiro Tsushima
Publication date: 22 August 2018
Published in: Israel Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11856-018-1717-x
Linear algebraic groups over finite fields (20G40) Representation theory for linear algebraic groups (20G05) Curves over finite and local fields (11G20) Étale and other Grothendieck topologies and (co)homologies (14F20) Representation-theoretic methods; automorphic representations over local and global fields (11F70)
Cites Work
- Semistable models for modular curves of arbitrary level
- On the stable reduction of the Lubin-Tate curve of level two in the equal characteristic case
- Extended Deligne-Lusztig varieties for general and special linear groups.
- The local Jacquet-Langlands correspondence via Fourier analysis
- Representations of automorphism groups of finite \(\mathfrak o\)-modules of rank two.
- Stable reduction of \(X_0(p^3)\). With an Appendix by Everett W. Howe
- Representations of reductive groups over finite fields
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- Gauss sums and p-adic division algebras
- The algebraisation of higher Deligne-Lusztig representations
- Affine Deligne-Lusztig varieties of higher level and the local Langlands correspondence for \(\mathrm{GL}_2\)
- STABLE MODELS OF LUBIN–TATE CURVES WITH LEVEL THREE
- Maximal varieties and the local Langlands correspondence for 𝐺𝐿(𝑛)
- The Smooth Representations of GL2(𝔒)
- On cuspidal representations of general linear groups over discrete valuation rings
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Cuspidal representations in the cohomology of Deligne-Lusztig varieties for \(\mathrm{GL}(2)\) over finite rings