Small data solutions of the Vlasov-Poisson system and the vector field method
From MaRDI portal
Publication:1661389
DOI10.1007/s40818-016-0016-2zbMath1397.35033arXiv1504.02195OpenAlexW2249280471MaRDI QIDQ1661389
Publication date: 16 August 2018
Published in: Annals of PDE (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1504.02195
Related Items
Asymptotic stability of equilibria for screened Vlasov-Poisson systems via pointwise dispersive estimates, Stability of vacuum for the Boltzmann equation with moderately soft potentials, Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data, Mixing in anharmonic potential well, A vector field method for relativistic transport equations with applications, On propagation of higher space regularity for nonlinear Vlasov equations, Global evolution of the U(1) Higgs boson: nonlinear stability and uniform energy bounds, Propagation of regularity and long time behavior of \(3D\) Massive relativistic transport equation I: Vlasov-Nordström system, Sharp asymptotic behavior of solutions of the \(3d\) Vlasov-Maxwell system with small data, On the stability of homogeneous equilibria in the Vlasov–Poisson system on R3, Scattering and Asymptotic Behavior of Solutions to the Vlasov–Poisson System in High Dimension, Decay estimates for the \(3D\) relativistic and non-relativistic Vlasov-Poisson systems, Nonlinear stability of self-gravitating massive fields. A wave-Klein–Gordon model, Scattering map for the Vlasov-Poisson system, Global classical solutions and the classical limit of the non-relativistic Vlasov-Darwin system with small initial data, Small data solutions for the Vlasov-Poisson system with a repulsive potential, Optimal decay estimates for the Vlasov-Poisson system with radiation damping, The Vlasov–Poisson–Landau system in the weakly collisional regime, A commuting-vector-field approach to some dispersive estimates, Einstein-Klein-Gordon spacetimes in the harmonic near-Minkowski regime, Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data, Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria, Stability of vacuum for the Landau equation with moderately soft potentials, A vector field method for massless relativistic transport equations and applications, The stability of the Minkowski space for the Einstein-Vlasov system, The stability of the Minkowski space for the Einstein-Vlasov system, Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge, Vector field methods for kinetic equations with applications to classical and relativistic systems, Sharp decay estimates for the Vlasov-Poisson system with an external magnetic field, Propagation of regularity and long time behavior of the \(3D\) Massive relativistic transport equation. II: Vlasov-Maxwell system, Phase mixing for solutions to 1D transport equation in a confining potential, Asymptotic dynamics of dispersive, collisionless plasmas
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Decay for solutions of the wave equation on Kerr exterior spacetimes. III: The full subextremalcase \(|a| < M\).
- Dispersion estimates for the two-dimensional Vlasov-Yukawa system with small data
- Orbital stability of spherical galactic models
- On Landau damping
- Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data
- Unstable and stable galaxy models
- The global stability of Minkowski space-time in harmonic gauge
- Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data
- Absence of shocks in an initially dilute collisionless plasma
- Propagation of moments and regularity for the 3-dimensional Vlasov- Poisson system
- Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data
- Global existence of solutions of the spherically symmetric Vlasov- Einstein system with small initial data
- Global existence of classical solutions to the Vlasov-Poisson system in a three-dimensional, cosmological setting
- A vector field method for relativistic transport equations with applications
- A non-variational approach to nonlinear stability in stellar dynamics applied to the King model
- A new physical-space approach to decay for the wave equation with applications to black hole spacetimes
- The decay of solutions of the exterior initial-boundary value problem for the wave equation
- A NOTE ON THE COLLAPSE OF SMALL DATA SELF-GRAVITATING MASSLESS COLLISIONLESS MATTER
- Uniform decay estimates and the lorentz invariance of the classical wave equation
- A small data theorem for collisionless plasma that includes high velocity particles
- The Global Nonlinear Stability of Minkowski Space for Self-Gravitating Massive Fields
- The geometry of the tangent bundle and the relativistic kinetic theory of gases
- Time decay for the nonlinear Klein-Gordon equation
- The limiting amplitude principle