On the Babuška-Osborn approach to finite element analysis: \(L^2\) estimates for unstructured meshes
From MaRDI portal
Publication:1663297
DOI10.1007/s00211-018-0955-5zbMath1397.65281OpenAlexW2790698976MaRDI QIDQ1663297
Publication date: 21 August 2018
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00211-018-0955-5
Boundary value problems for second-order elliptic equations (35J25) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30)
Related Items (3)
On the discretization of evolution <i>p</i>-bi-Laplace equation ⋮ Adaptive characteristic length for L-SIAC filtering of FEM data ⋮ On the numerical approximation of p‐biharmonic and ∞‐biharmonic functions
Cites Work
- Unnamed Item
- Unnamed Item
- Convergence and quasi-optimality of an adaptive finite element method for controlling \(L_{2}\) errors
- Robust localization of the best error with finite elements in the reaction-diffusion norm
- Finite element methods (Part 1)
- Analysis of finite element methods for second order boundary value problems using mesh dependent norms
- Ein Kriterium für die Quasi-Optimalität des Titzschen Verfahrens
- On the Stability of the Discontinuous Galerkin Method for the Heat Equation
- A new error analysis for discontinuous finite element methods for linear elliptic problems
- Analysis of Mixed Methods Using Mesh Dependent Norms
- Interior Estimates for Ritz-Galerkin Methods
- AN ADAPTIVE FINITE ELEMENT METHOD WITH EFFICIENT MAXIMUM NORM ERROR CONTROL FOR ELLIPTIC PROBLEMS
- A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems
- Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations
- Adaptive Finite Element Methods for Parabolic Problems II: Optimal Error Estimates in $L_\infty L_2 $ and $L_\infty L_\infty $
This page was built for publication: On the Babuška-Osborn approach to finite element analysis: \(L^2\) estimates for unstructured meshes