On the Birkhoff quadrature formulas using even and odd order of derivatives
From MaRDI portal
Publication:1665748
DOI10.1155/2015/468629zbMath1394.65019OpenAlexW1564603522WikidataQ59118660 ScholiaQ59118660MaRDI QIDQ1665748
Publication date: 27 August 2018
Published in: Mathematical Problems in Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2015/468629
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Birkhoff quadrature formulae based on the zeros of Jacobi polynomials
- Gauss-Tur'an quadratures of Kronrod type for generalized Chebyshev weight functions
- Quadrature rules using an arbitrary fixed order of derivatives
- Interpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature
- Existence of Gaussian quadrature formulas for Birkhoff type data
- On Turán quadrature formulas for the Chebyshev weight
- Turán quadrature formulas and Christoffel type functions for the Chebyshev polynomials of the second type
- Interpolation and approximation by polynomials
- Quadrature formulae
- On Some Open Problems of P. Turan Concerning Birkhoff Interpolation
- Comparison of Birkhoff Type Quadrature Formulae
- On Birkhoff Quadrature Formulas
- Uniqueness of Gauss–Birkhoff Quadrature Formulas
- A New Class of Gaussian Quadrature Formulas Based on Birkhoff Type Data
- On birkhoff (0,3) and (0,4) quadrature formulae
- On weight functions which admit explicit Gauss-Turán quadrature formulas
- On Birkhoff quadrature formulas. II
This page was built for publication: On the Birkhoff quadrature formulas using even and odd order of derivatives