A \({\mathtt p}(\cdot )\)-Poincaré-type inequality for variable exponent Sobolev spaces with zero boundary values in Carnot groups
From MaRDI portal
Publication:1668703
DOI10.1007/s13324-018-0235-7zbMath1404.46030OpenAlexW2804675447MaRDI QIDQ1668703
Robert D. Freeman, Thomas Bieske
Publication date: 29 August 2018
Published in: Analysis and Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13324-018-0235-7
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Nilpotent and solvable Lie groups (22E25) Other generalizations (nonlinear potential theory, etc.) (31C45) Sub-Riemannian geometry (53C17) Subelliptic equations (35H20) Potential theory on fractals and metric spaces (31E05) Nonlinear boundary value problems for nonlinear elliptic equations (35J66)
Related Items
Equivalence of weak and viscosity solutions to the \({\mathtt{p}}(x)\)-Laplacian in Carnot groups ⋮ Correction to: ``A \({\mathtt{p}}({\cdot })\)-Poincaré-type inequality for variable exponent Sobolev spaces with zero boundary values in Carnot groups
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lebesgue and Sobolev spaces with variable exponents
- The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values
- Sobolev inequalities on Lie groups and symmetric spaces
- Analysis on nilpotent groups
- The sharp Poincaré inequality for free vector fields: An endpoint result
- Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator
- The Poincaré inequality for vector fields satisfying Hörmander's condition
- Sobolev capacity of the space \(W^{1,p(\cdot)} (\mathbb{R}^n)\)
- Representation formulas and weighted Poincaré inequalities for Hörmander vector fields
- Sobolev spaces with zero boundary values on metric spaces
- Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition in variable exponent Sobolev spaces
- Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications
- Variable exponent Sobolev spaces on metric measure spaces
- Inequalities of Hardy–Sobolev Type in Carnot–Carathéodory Spaces
- Regularity results for a class of functionals with non-standard growth
- Harmonic functions on metric spaces