Derivative and Lipschitz type characterizations of variable exponent Bergman spaces
From MaRDI portal
Publication:1671191
DOI10.1155/2018/8751849zbMath1406.46019OpenAlexW2886146072WikidataQ129478668 ScholiaQ129478668MaRDI QIDQ1671191
Publication date: 6 September 2018
Published in: Journal of Function Spaces (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2018/8751849
Bergman spaces of functions in several complex variables (32A36) Banach spaces of continuous, differentiable or analytic functions (46E15)
Related Items
The conjugate operator on variable harmonic Bergman spaces ⋮ Atomic decomposition and composition operators on variable exponent Bergman spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Variable Lebesgue spaces. Foundations and harmonic analysis
- Variable exponent Campanato spaces
- Lebesgue and Sobolev spaces with variable exponents
- New characterizations of Hajłasz-Sobolev spaces on metric spaces
- Carleson measures for variable exponent Bergman spaces
- Sobolev spaces on an arbitrary metric space
- Variable exponent Bergman spaces
- Pointwise characterizations of Hardy-Sobolev functions
- Lipschitz Type Characterizations for Bergman Spaces
- Inégalités à poids pour le projecteur de Bergman dans la boule unité de $C^{n}$
- Sobolev met Poincaré