Certain properties of Gegenbauer polynomials via Lie algebra
DOI10.1007/s13398-016-0343-xzbMath1375.33015OpenAlexW2528588083WikidataQ62617535 ScholiaQ62617535MaRDI QIDQ1674101
Praveen Agarwal, Krunal B. Kachhia, Jyotindra C. Prajapati, Junesang Choi
Publication date: 1 November 2017
Published in: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13398-016-0343-x
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Connections of hypergeometric functions with groups and algebras, and related topics (33C80) Orthogonal polynomials and functions in several variables expressible in terms of special functions in one variable (33C50)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A novel theory of Legendre polynomials
- Generalized Bessel functions and generalized Hermite polynomials
- A unified point of view on the theory of generalized Bessel functions
- The Gegenbauer Addition Theorem
- Some Properties of Two Variable Laguerre Polynomials Via Lie Algebra
- A Diagonal Expansion in Gegenbauer Polynomials for a Class of Second-Order Probability Densities
- A New Class of Orthogonal Polynomials: The Bessel Polynomials
This page was built for publication: Certain properties of Gegenbauer polynomials via Lie algebra