Upper bounds for uniform Lebesgue constants of interpolation periodic sourcewise representable splines
From MaRDI portal
Publication:1675330
DOI10.1134/S0081543817050182zbMath1376.41007OpenAlexW2752591619MaRDI QIDQ1675330
Valerii T. Shevaldin, O. Ya. Shevaldina
Publication date: 27 October 2017
Published in: Proceedings of the Steklov Institute of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s0081543817050182
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Exact values of Kolmogorov widths of classes of Poisson integrals
- Sharp Lebesgue constants for bounded cubic interpolation \(\mathcal L\)-splines
- On the Lebesgue constants for cardinal \({\mathcal L}\)-spline interpolation
- On n-widths of periodic functions
- Exact bounds for the uniform approximation for continuous periodic functions by r-th order splines
- On the existence of interpolating \(SK\)-splines
- Letter to the editor: Diameters and quadrature formulas on periodic function classes, conjugate to the Sobolev classes
- Best bounds for the uniform periodic spline interpolation operator
- Lower estimates for the widths of classes of sourcewise representable functions
- SHARP ESTIMATES OF THE WIDTHS OF CONVOLUTION CLASSES
- Lebesgue Constants for Cardinal -Spline Interpolation
- Asymptotic behaviour of the Lebesgue constants of periodic interpolation splines with equidistant nodes