The Fréchet spaces \(ces(p+)\), \(1
From MaRDI portal
Publication:1682110
DOI10.1016/J.JMAA.2017.10.024zbMath1403.46005OpenAlexW2761397144MaRDI QIDQ1682110
Angela A. Albanese, José Bonet, Werner J. Ricker
Publication date: 28 November 2017
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2017.10.024
Sequence spaces (including Köthe sequence spaces) (46A45) Spaces defined by inductive or projective limits (LB, LF, etc.) (46A13) Locally convex Fréchet spaces and (DF)-spaces (46A04)
Related Items (6)
Spectral properties of generalized Cesàro operators in sequence spaces ⋮ Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces ⋮ Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces ⋮ Chaos and frequent hypercyclicity for weighted shifts ⋮ Operators on the Fréchet sequence spaces \(ces(p+)\), \(1\le p<\infty \) ⋮ The Cesàro operator on smooth sequence spaces of finite type
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Solid extensions of the Cesàro operator on \(\ell^p\) and \(c_0\)
- The canonical spectral measure in Köthe echelon spaces
- Fréchet spaces with unconditional base
- (FBa)- and (FBB)-spaces
- Rybakov's theorem for vector measures in Fréchet spaces
- The blocking technique, weighted mean operators and Hardy's inequality
- THE CESÀRO OPERATOR IN THE FRÉCHET SPACES ℓp+ AND Lp−
- On Boolean Algebras of Projections and Algebras of Operators
- Shorter Notes: An Example of Frechet Space, not Montel, Without Infinite Dimensional Normable Subspaces
- Existence of Bade functionals for complete Boolean algebras of projections in Fréchet spaces
- On the Space lp+ = ∩lqq>p
- Factorizing the classical inequalities
- Weak compactness in locally convex spaces
- Produits tensoriels topologiques et espaces nucléaires
This page was built for publication: The Fréchet spaces \(ces(p+)\), \(1<p<\infty\)