Improved maximum-norm a posteriori error estimates for linear and semilinear parabolic equations
DOI10.1007/s10444-017-9514-3zbMath1378.65167OpenAlexW2592448143MaRDI QIDQ1683221
Natalia Kopteva, Torsten Linss
Publication date: 6 December 2017
Published in: Advances in Computational Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10444-017-9514-3
numerical examplesemidiscretizationparabolic problemsCrank-Nicolsonbackward Eulerelliptic reconstructionsmaximum-norm a posteriori error estimates
Finite difference methods for initial value and initial-boundary value problems involving PDEs (65M06) Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations (65L06) Error bounds for initial value and initial-boundary value problems involving PDEs (65M15) Method of lines for initial value and initial-boundary value problems involving PDEs (65M20) Semilinear parabolic equations (35K58)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems
- A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems.
- Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem
- Pointwise a posteriori error estimates for monotone semi-linear equations
- Maximum norm a posteriori error estimation for a time-dependent reaction-diffusion problem
- Maximum Norm A Posteriori Error Estimation for Parabolic Problems Using Elliptic Reconstructions
- Numerical Study of Maximum Norm a Posteriori Error Estimates for Singularly Perturbed Parabolic Problems
- Maximum-Norm A Posteriori Error Estimates for Singularly Perturbed Reaction-Diffusion Problems on Anisotropic Meshes
- A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems
- Sharply local pointwise a posteriori error estimates for parabolic problems
- Non-Gaussian Aspects of Heat Kernel Behaviour
- Elliptic Reconstruction and a Posteriori Error Estimates for Parabolic Problems
- Adaptive Finite Element Methods for Parabolic Problems II: Optimal Error Estimates in $L_\infty L_2 $ and $L_\infty L_\infty $
This page was built for publication: Improved maximum-norm a posteriori error estimates for linear and semilinear parabolic equations