An infinitesimal Noether-Lefschetz theorem for Chow groups
From MaRDI portal
Publication:1684743
DOI10.1016/j.jpaa.2016.10.019zbMath1401.14033OpenAlexW2539301824MaRDI QIDQ1684743
Deepam Patel, Girivaru V. Ravindra
Publication date: 12 December 2017
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jpaa.2016.10.019
Algebraic cycles (14C25) (Equivariant) Chow groups and rings; motives (14C15) Applications of methods of algebraic (K)-theory in algebraic geometry (14C35)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Towards connectivity for codimension 2 cycles: infinitesimal deformations
- Relative algebraic K-theory and cyclic homology
- Griffiths' infinitesimal invariant and the Abel-Jacobi map
- Cyclic homology, derivations, and the free loopspace
- Continuous étale cohomology
- Étale descent for Hochschild and cyclic homology
- The formal Hodge filtration
- Cohomological and cycle-theoretic connectivity
- Weak Lefschetz for Chow groups: infinitesimal lifting
- Algebraic cycles and Hodge theoretic connectivity
- Infinitesimal cohomology and the Chern character to negative cyclic homology
- Séminaire de géométrie algébrique du Bois-Marie 1967--1969. Groupes de monodromie en géométrie algébrique (SGA 7 II) par P. Deligne et N. Katz. Exposés X à XXII
- The Noether-Lefschetz theorem for the divisor class group
- Effective bounds for Hodge-theoretic connectivity
This page was built for publication: An infinitesimal Noether-Lefschetz theorem for Chow groups