Iterative methods for a class of variational inequalities in Hilbert spaces
From MaRDI portal
Publication:1684854
DOI10.1007/s11784-017-0442-0zbMath1493.47097OpenAlexW2609116682MaRDI QIDQ1684854
Pham Thi Thu Hoai, Buong Nguyen, Nguyen Duong Nguyen
Publication date: 12 December 2017
Published in: Journal of Fixed Point Theory and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11784-017-0442-0
Variational inequalities (49J40) Iterative procedures involving nonlinear operators (47J25) Contraction-type mappings, nonexpansive mappings, (A)-proper mappings, etc. (47H09)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A steepest-descent Krasnosel'skii-Mann algorithm for a class of variational inequalities in Banach spaces
- A contraction proximal point algorithm with two monotone operators
- A proximal point algorithm converging strongly for general errors
- Averaged mappings and the gradient-projection algorithm
- A regularization method for the proximal point algorithm
- On convergence criteria of generalized proximal point algorithms
- On Reich's strong convergence theorems for resolvents of accretive operators
- Weak convergence theorems for nonexpansive mappings in Banach spaces
- Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces
- Strong convergence theorems for resolvents of accretive operators in Banach spaces
- Produits infinis de resolvantes
- An iterative approach to quadratic optimization
- Projection and proximal point methods: Convergence results and counterexamples.
- Infinite products of resolvents of accretive operators
- A modified regularization method for the proximal point algorithm
- Approximating solutions of maximal monotone operators in Hilbert spaces
- A strongly convergent iterative solution of \(0 \in U(x)\) for a maximal monotone operator U in Hilbert space
- Strong convergence of a regularization method for Rockafellar's proximal point algorithm
- Forcing strong convergence of proximal point iterations in a Hilbert space
- Sur l'approximation d'équtions et inéquations aux dérivées partielles non linéaires de type monotone
- Strongly Convergent Algorithms for Variational Inequality Problem Over the Set of Solutions the Equilibrium Problems
- Strong Convergence of an Iterative Method with Perturbed Mappings for Nonexpansive and Accretive Operators
- On the Convergence of the Proximal Point Algorithm for Convex Minimization
- Monotone Operators and the Proximal Point Algorithm
- Convergence of the generalized contraction-proximal point algorithm in a Hilbert space
- Combining The Proximal Algorithm And Tikhonov Regularization
This page was built for publication: Iterative methods for a class of variational inequalities in Hilbert spaces