Quantalic topological theories
DOI10.1515/tmj-2017-0110zbMath1388.18003OpenAlexW2771719656MaRDI QIDQ1689324
Publication date: 12 January 2018
Published in: Tbilisi Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1515/tmj-2017-0110
monadquantale(lax) \(\lambda\)-algebra(lax) distributive law\((\mathbb{T},\mathsf V))\)-categorylax monad extensionnatural topological theoryquantalic topological theorytopological platform
Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads (18C15) Categorical structures (18D99) Eilenberg-Moore and Kleisli constructions for monads (18C20)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Kleisli enriched
- On the categorical meaning of Hausdorff and Gromov distances. I.
- Introduction to extensive and distributive categories
- Topological features of Lax algebras
- Representable multicategories
- The formal theory of monads. II
- Metric, topology and multicategory -- a common approach
- Topological theories and closed objects
- Ordered topological structures
- Quantale-valued topological spaces via closure and convergence
- Adjoint functors and triples
- The formal theory of monads
- Monoidal Topology
- A convergence theory for probabilistic metric spaces
- 'Hausdorff distance' via conical cocompletion
- Topological functors
- Lax distributive laws for topology, II
- Lax Distributive Laws for Topology, I
- Every Standard Construction is Induced by a Pair of Adjoint Functors
- Relational algebras
This page was built for publication: Quantalic topological theories