Generalized poly-Cauchy and poly-Bernoulli numbers by using incomplete \(r\)-Stirling numbers
DOI10.1007/s00010-017-0509-4zbMath1422.11046OpenAlexW2763225741MaRDI QIDQ1689414
José L. Ramírez, Takao Komatsu
Publication date: 12 January 2018
Published in: Aequationes Mathematicae (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00010-017-0509-4
combinatorial identitiesgenerating functionpoly-Bernoulli numberspoly-Cauchy numbersincomplete \(r\)-Stirling numbers
Exact enumeration problems, generating functions (05A15) Bell and Stirling numbers (11B73) Combinatorial identities, bijective combinatorics (05A19) Bernoulli and Euler numbers and polynomials (11B68)
Related Items (4)
Cites Work
- Incomplete poly-Cauchy numbers
- Poly-Cauchy numbers with a \(q\) parameter
- Generalized Bessel numbers and some combinatorial settings
- Real zeros and partitions without singleton blocks
- The \(r\)-Stirling numbers
- Involutions and their progenies
- \(q\)-poly-Bernoulli numbers and \(q\)-poly-Cauchy numbers with a parameter by Jackson's integrals
- Generalizations of poly-Bernoulli and poly-Cauchy numbers
- Poly-Bernoulli numbers
- Combinatorial and arithmetical properties of the restricted and associated Bell and factorial numbers
- Incomplete poly-Bernoulli numbers and incomplete poly-Cauchy numbers associated to the \(q\)-Hurwitz-Lerch zeta function
- On the unimodality and combinatorics of Bessel numbers
- Incomplete Cauchy numbers
- Poly-Bernoulli numbers and polynomials with a \(q\) parameter
- Reciprocity for multirestricted Stirling numbers
- The Cauchy numbers
- POLY-CAUCHY NUMBERS
- POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS
- Combinatorics of Set Partitions
- Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers
- Periodicity of the last digits of some combinatorial sequences
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Generalized poly-Cauchy and poly-Bernoulli numbers by using incomplete \(r\)-Stirling numbers