Exact constructive and computable dimensions
From MaRDI portal
Publication:1694005
DOI10.1007/s00224-017-9790-9zbMath1391.68063OpenAlexW2574207796MaRDI QIDQ1694005
Publication date: 1 February 2018
Published in: Theory of Computing Systems (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00224-017-9790-9
Algorithmic information theory (Kolmogorov complexity, etc.) (68Q30) Fractals (28A80) Martingales and classical analysis (60G46)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Representation of left-computable \(\varepsilon \)-random reals
- Correspondence principles for effective dimensions
- Constructive dimension equals Kolmogorov complexity
- Scaled dimension and the Kolmogorov complexity of Turing-hard sets
- Random closed sets viewed as random recursions
- The extent and density of sequences within the minimal-program complexity hierarchies
- On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line
- A tight upper bound on Kolmogorov complexity and uniformly optimal prediction
- A generalization of Chaitin's halting probability \(\Omega\) and halting self-similar sets
- Noiseless coding of combinatorial sources, Hausdorff dimension, and Kolmogorov complexity
- A Kolmogorov complexity characterization of constructive Hausdorff dimension.
- Scaled dimension and nonuniform complexity
- The dimensions of individual strings and sequences
- Kolmogorov complexity and Hausdorff dimension
- The Kolmogorov complexity of infinite words
- Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. (Randomness and probability. An algorithmic foundation of probability theory)
- On partial randomness
- A property of Hausdorff measure
- Correction to ``A property of Hausdorff measure
- A Correspondence Principle for Exact Constructive Dimension
- Bounds on the Kolmogorov Complexity Function for Infinite Words
- Exact Hausdorff dimension in random recursive constructions
- Constructive Dimension and Hausdorff Dimension: The Case of Exact Dimension
- Algorithmic Randomness and Complexity
- Can an individual sequence of zeros and ones be random?
- The exact Hausdorff dimension in random recursive constructions
- Dimension in Complexity Classes
- Relations between varieties of kolmogorov complexities
- Refined Bounds on Kolmogorov Complexity for ω-Languages
- On Oscillation-free ε-random Sequences
- THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS
This page was built for publication: Exact constructive and computable dimensions