Isoperimetric inequality along the twisted Kähler-Ricci flow
From MaRDI portal
Publication:1694867
DOI10.1016/j.difgeo.2017.11.001zbMath1381.53115arXiv1502.06057OpenAlexW2964009728WikidataQ115355230 ScholiaQ115355230MaRDI QIDQ1694867
Publication date: 6 February 2018
Published in: Differential Geometry and its Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1502.06057
Fano varieties (14J45) Methods of global Riemannian geometry, including PDE methods; curvature restrictions (53C21)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Uniformly elliptic operators on Riemannian manifolds
- The (logarithmic) Sobolev inequalities along geometric flow and applications
- Kähler-Einstein metrics and integral invariants
- The geometric Sobolev embedding for vector fields and the isoperimetric inequality
- The generalized Kähler Ricci flow
- The logarithmic Sobolev and Sobolev inequalities along the Ricci flow
- Bounds on volume growth of geodesic balls under Ricci flow
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- The twisted Kähler-Ricci flow
- Space of Ricci Flows I
- Isoperimetric inequality under Kähler Ricci flow
- Generalized Kähler–Einstein Metrics and Energy Functionals
- THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS
- BOUNDING SCALAR CURVATURE AND DIAMETER ALONG THE KÄHLER RICCI FLOW (AFTER PERELMAN)
- The isoperimetric inequality
- On the Conditions to Extend Ricci Flow(III)
- A Uniform Sobolev Inequality Under Ricci Flow