Loops in AdS from conformal field theory
From MaRDI portal
Publication:1696245
DOI10.1007/JHEP07(2017)036zbMATH Open1380.81280arXiv1612.03891MaRDI QIDQ1696245
Author name not available (Why is that?)
Publication date: 14 February 2018
Published in: (Search for Journal in Brave)
Abstract: We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in , given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving part of the four-point function in theory in AdS which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an infinite series of poles, and discuss applications to more complicated cases such as the super-Yang-Mills theory.
Full work available at URL: https://arxiv.org/abs/1612.03891
No records found.
No records found.
This page was built for publication: Loops in AdS from conformal field theory
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q1696245)