Spectral asymptotics for \(V\)-variable Sierpinski gaskets
DOI10.1214/16-AIHP787zbMath1387.35434arXiv1502.00711MaRDI QIDQ1700409
John E. Hutchinson, Uta Renata Freiberg, Benjamin M. Hambly
Publication date: 5 March 2018
Published in: Annales de l'Institut Henri Poincaré. Probabilités et Statistiques (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1502.00711
Laplace operatorspectral asymptoticsSierpinski gasketspectral dimensionheat kernel estimatesrandom fractalseigenvalue counting functionV-variable
Dirichlet forms (31C25) Asymptotic distributions of eigenvalues in context of PDEs (35P20) Diffusion processes (60J60) Fractals (28A80) Heat kernel (35K08)
Related Items (7)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Spectral decimation on Hambly's homogeneous hierarchical gaskets
- Random walk on the incipient infinite cluster for oriented percolation in high dimensions
- \(V\)-variable fractals: Fractals with partial self similarity
- Diffusion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice
- The Alexander-Orbach conjecture holds in high dimensions
- Statistically self-similar fractals
- Lectures on probability theory and statistics. Ecole d'Eté de probabilités de Saint-Flour XXV - 1995. Lectures given at the summer school in Saint-Flour, France, July 10-26, 1995
- Brownian motion on a homogeneous fractal
- Weyl's problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals
- Transition density estimates for Brownian motion on affine nested fractals
- Brownian motion on a random recursive Sierpinski gasket
- Transition density estimates for Brownian motion on scale irregular Sierpiński gaskets
- Harmonic analysis for resistance forms.
- Transition density estimates for diffusion processes on homogeneous random Sierpiński carpets
- On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets
- Fluctuation of the transition density for Brownian motion on random recursive Sierpiński gaskets.
- Harmonic calculus on limits of networks and its application to dendrites
- Hausdorff dimensions of self-similar sets and shortest path metrics
- Self-similarity and spectral asymptotics for the continuum random tree
- Random fractals and probability metrics
- Resistance forms, quasisymmetric maps and heat kernel estimates
- -variable fractals: dimension results
- Random Recursive Constructions: Asymptotic Geometric and Topological Properties
- Random fractals
- Effective resistances for harmonic structures on p.c.f. self-similar sets
- Multifractal formalisms for the local spectral and walk dimensions
- Local Nash Inequality and Inhomogeneity of Heat Kernels
- Heat kernel fluctuations for a resistance form with non-uniform volume growth
- A FRACTAL VALUED RANDOM ITERATION ALGORITHM AND FRACTAL HIERARCHY
- Transition density asymptotics for some diffusion processes with multi-fractal structures
This page was built for publication: Spectral asymptotics for \(V\)-variable Sierpinski gaskets