A comparison of dependence function estimators in multivariate extremes
From MaRDI portal
Publication:1703851
DOI10.1007/s11222-017-9745-7zbMath1384.62163OpenAlexW2613161654MaRDI QIDQ1703851
Raphaël Huser, Sabrina Vettori, Marc G. Genton
Publication date: 7 March 2018
Published in: Statistics and Computing (Search for Journal in Brave)
Full work available at URL: http://hdl.handle.net/10754/623662
copulaconvexitygreatest convex minorantmultivariatePickands dependence functionextreme valuecomponentwise maximaasymmetric logistic modelnonparametric and parametric estimators
Estimation in multivariate analysis (62H12) Measures of association (correlation, canonical correlation, etc.) (62H20) Generalized linear models (logistic models) (62J12) Statistics of extreme values; tail inference (62G32)
Related Items
Inference for asymptotically independent samples of extremes, Asymmetric tail dependence modeling, with application to cryptocurrency market data, Reweighted madogram-type estimator of Pickands dependence function, Asymptotic behavior of an intrinsic rank-based estimator of the Pickands dependence function constructed from B-splines, Unnamed Item, Nonparametric estimation of multivariate tail probabilities and tail dependence coefficients
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Bayesian inference for the extremal dependence
- Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials
- Likelihood estimators for multivariate extremes
- Homogeneous distributions -- and a spectral representation of classical mean values and stable tail dependence functions
- Nonparametric estimation of multivariate extreme-value copulas
- Using B-splines for nonparametric inference on bivariate extreme-value copulas
- Nonparametric estimation of an extreme-value copula in arbitrary dimensions
- New estimators of the Pickands dependence function and a test for extreme-value dependence
- On composite marginal likelihoods
- An introduction to copulas.
- Maximum empirical likelihood estimation of the spectral measure of an extreme-value distribu\-tion
- Rank-based inference for bivariate extreme-value copulas
- Construction of asymmetric multivariate copulas
- A spectral representation for max-stable processes
- Multivariate Bernstein polynomials and convexity
- On the limiting behavior of the Pickands estimator for bivariate extreme- value distributions
- Inequalities for the extremal coefficients of multivariate extreme value distributions
- Distribution and dependence-function estimation for bivariate extreme-value distributions.
- Estimation of a bivariate extreme value distribution
- Nonparametric estimation of the spectral measure of an extreme value distribution.
- Shape preserving representations and optimality of the Bernstein basis
- Tests of symmetry for bivariate copulas
- Nonparametric estimation of the dependence function for a multivariate extreme value distribution
- HIGH-DIMENSIONAL PARAMETRIC MODELLING OF MULTIVARIATE EXTREME EVENTS
- Statistics of Multivariate Extremes
- Modelling multivariate extreme value distributions
- Bivariate Exponential Distributions
- Variograms for spatial max-stable random fields
- A note on composite likelihood inference and model selection
- Modelling pairwise dependence of maxima in space
- Bivariate extreme value theory: Models and estimation
- Limit theory for multivariate sample extremes
- A nonparametric estimation procedure for bivariate extreme value copulas
- A dependence measure for multivariate and spatial extreme values: Properties and inference
- Statistics of Extremes
- Likelihood-Based Inference for Max-Stable Processes
- Nonparametric Identification of Copula Structures
- Geostatistics of extremes
- Projection estimators of Pickands dependence functions
- A bayesian estimator for the dependence function of a bivariate extreme‐value distribution
- Nonparametric estimation of the dependence function in bivariate extreme value distributions