Algebraic \(K\)-theory of Gorenstein projective modules
DOI10.1007/s11464-017-0673-9zbMath1381.16007OpenAlexW2776102316MaRDI QIDQ1705057
Nan Gao, Miantao Liu, Ruixin Li
Publication date: 14 March 2018
Published in: Frontiers of Mathematics in China (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11464-017-0673-9
Gorenstein projective modulerecollementFrobenius pairGorenstein algebraic \(K\)-groupidempotent complete category
Free, projective, and flat modules and ideals in associative algebras (16D40) Grothendieck groups, (K)-theory, etc. (16E20) Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.) (16E65) Computations of higher (K)-theory of rings (19D50) Algebraic (K)-theory and (L)-theory (category-theoretic aspects) (18F25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Higher algebraic \(K\)-theory of ring epimorphisms
- On algebras of finite Cohen-Macaulay type.
- Stratifying derived module categories
- Gorenstein derived categories
- Chain complexes and stable categories
- Relative homological algebra
- Gorenstein singularity categories
- Negative \(K\)-theory of derived categories
- Higher algebraic K-theory: I
- Stable module theory
- Idempotent completion of triangulated categories
This page was built for publication: Algebraic \(K\)-theory of Gorenstein projective modules