Existence of solutions for nonlinear \(p\)-Laplacian difference equations
From MaRDI portal
Publication:1705678
DOI10.12775/TMNA.2017.022MaRDI QIDQ1705678
Lorena Saavedra, Stepan Agop Tersian
Publication date: 16 March 2018
Published in: Topological Methods in Nonlinear Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1606.07607
Variational methods involving nonlinear operators (47J30) Equations involving nonlinear operators (general) (47J05) Linear difference operators (47B39)
Related Items (2)
Homoclinic solutions of nonlinear Laplacian difference equations without Ambrosetti-Rabinowitz condition ⋮ Existence of homoclinic solutions for a nonlinear fourth order \(p\)-Laplacian difference equation
Cites Work
- Unnamed Item
- Existence of solutions for \(2n\)th-order nonlinear \(p\)-Laplacian differential equations
- Multiple homoclinic solutions for the discrete \(p\)-Laplacian via critical point theory
- Homoclinic solutions of difference equations with variable exponents
- Existence of homoclinic orbits for \(2n\)th-order nonlinear difference equations containing both many advances and retardations
- On homoclinic solutions of a semilinear \(p\)-Laplacian difference equation with periodic coefficients
- Multiple solutions for a discrete boundary value problem involving the \(p\)-Laplacian
- Existence of positive solutions for higher order difference equations
- On the existence of positive solutions of \(p\)-Laplacian difference equations.
- Existence and uniqueness results for discrete second-order periodic boundary value problems
- A three critical points theorem and its applications to the ordinary Dirichlet problem
- Multiple positive solutions of singular and nonsingular discrete problems via variational methods
- Periodic and subharmonic solutions for \(2n\)th-order \(p\)-Laplacian difference equations
- Three positive solutions of boundary value problems for \(p\)-Laplacian difference equations
- Remarks on finding critical points
- THE EXISTENCE OF PERIODIC AND SUBHARMONIC SOLUTIONS OF SUBQUADRATIC SECOND ORDER DIFFERENCE EQUATIONS
- Homoclinic solutions for a class of second order discrete Hamiltonian systems
- Existence of periodic solutions for a \(2n\)th-order nonlinear difference equation
- Spatial patterns. Higher order models in physics and mechanics
- Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations
This page was built for publication: Existence of solutions for nonlinear \(p\)-Laplacian difference equations