Test sets for polynomials: \(n\)-universal subsets and Newton sequences
From MaRDI portal
Publication:1706246
DOI10.1016/j.jalgebra.2018.01.020zbMath1390.13060OpenAlexW2794025910MaRDI QIDQ1706246
Paul-Jean Cahen, Jean-Luc Chabert
Publication date: 21 March 2018
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2018.01.020
Polynomial rings and ideals; rings of integer-valued polynomials (13F20) Polynomials over commutative rings (13B25) Dedekind, Prüfer, Krull and Mori rings and their generalizations (13F05)
Related Items
Paul-Jean Cahen (1946–2019), Simultaneous p-Orderings and Equidistribution, A survey on fixed divisors
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Newtonian and Schinzel quadratic fields
- Factorial preservation
- Simultaneous \(p\)-orderings and minimizing volumes in number fields
- On the interpolation of integer-valued polynomials
- Sets that determine integer-valued polynomials
- Polynomials which take Gaussian integer values at Gaussian integers
- Pseudo-valuation domains
- Integer valued polynomials over a number field
- \(P\)-orderings: A metric viewpoint and the non-existence of simultaneous orderings.
- Regular subsets of valued fields and Bhargava's \(v\)-orderings
- The Factorial Function and Generalizations
- Integer-Valued Polynomials
- Anneaux de Bhargava
- Une Caractérisation des Polynômes Prenant des Valeurs Entières Sur Tous les Nombres Premiers
- P-orderings and polynomial functions on arbitrary subsets of Dedekind rings.
- What You Should Know About Integer-Valued Polynomials
- About Polynomials Whose Divided Differences are Integer-Valued on Prime Numbers
- p -adic subsets whose factorials satisfy a generalized Legendre formula