\(T\)-folds from Yang-Baxter deformations

From MaRDI portal
Publication:1707768

DOI10.1007/JHEP12(2017)108zbMath1383.83206arXiv1710.06849MaRDI QIDQ1707768

Jun-ichi Sakamoto, Jose J. Fernández-Melgarejo, Kentaroh Yoshida, Yuho Sakatani

Publication date: 3 April 2018

Published in: Journal of High Energy Physics (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1710.06849




Related Items

Lax pairs for new \(\mathbb{Z}_N\)-symmetric coset \(\sigma\)-models and their Yang-Baxter deformationsGeneralised fluxes, Yang-Baxter deformations and the O\((d,d)\) structure of non-abelian \(T\)-dualityGeneralized dualities and higher derivativesSuper non-abelian T-dualityLocal \(\beta\)-deformations and Yang-Baxter sigma modelYang-Baxter deformations beyond coset spaces (a slick way to do TsT)Conformal twists, Yang–Baxter σ-models & holographic noncommutativityHolographic integration of $T\overline{T}$ \& $J\overline{T}$ via $O(d,d)$On quantum Poisson-Lie T-duality of WZNW modelsGeneralised U-dual solutions via ISO(7) gauged supergravity\(O(d,d)\) transformations preserve classical integrabilityYang-Baxter deformations of the \(\mathrm{AdS}_{5} \times S^5\) pure spinor superstringClassical Yang-Baxter equation from \(\beta\)-supergravityClassical and quantum aspects of Yang-Baxter Wess-Zumino modelsYang–Baxter deformation as an $\boldsymbol {O(d,d)}$ transformationTri-vector deformations in \(d = 11\) supergravityPoisson-Lie duals of the \(\eta\)-deformed \(\mathrm{AdS}_{2} \times S^2 \times T^6\) superstringCurrents, charges and algebras in exceptional generalised geometryDressing cosets and multi-parametric integrable deformationsNon-abelian tri-vector deformations in \(d = 11\) supergravityKilling spinors from classical r-matricesGeneralised U-dual solutions in supergravityYang–Baxter deformations and generalized supergravity—a short summary



Cites Work