Monotone finite-difference scheme preserving high accuracy in regions of shock influence
From MaRDI portal
Publication:1709873
DOI10.1134/S1064562418060315zbMath1407.65137OpenAlexW2899683254MaRDI QIDQ1709873
V. V. Ostapenko, O. A. Kovyrkina, N. A. Zyuzina
Publication date: 15 January 2019
Published in: Doklady Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s1064562418060315
Shocks and singularities for hyperbolic equations (35L67) PDEs in connection with fluid mechanics (35Q35) Shock waves and blast waves in fluid mechanics (76L05) Finite difference methods for initial value and initial-boundary value problems involving PDEs (65M06)
Related Items (13)
Сравнительный анализ точности трех различных схем при сквозном расчете ударных волн ⋮ On convergence of finite-difference shock-capturing schemes in regions of shock waves influence ⋮ On the accuracy of shock-capturing schemes calculating gas-dynamic shock waves ⋮ Experimental convergence rate study for three shock‐capturing schemes and development of highly accurate combined schemes ⋮ Combined DG scheme that maintains increased accuracy in shock wave areas ⋮ On the accuracy of discontinuous Galerkin method calculating gas-dynamic shock waves ⋮ On the integral convergence of numerical schemes calculating gas-dynamic shock waves ⋮ On accuracy of finite-difference schemes in calculations of centered rarefaction waves;О точности разностных схем при расчете центрированных волн разрежения ⋮ О точности схемы типа MUSCL при расчете разрывных решений ⋮ Accuracy of MUSCL-type schemes in shock wave calculations ⋮ On the accuracy of shock-capturing schemes when calculating Cauchy problems with periodic discontinuous initial data ⋮ О повышении устойчивости комбинированной схемы разрывного метода Галеркина ⋮ Combined numerical schemes
Cites Work
- Unnamed Item
- On the convergence of shock-capturing difference schemes
- Non-oscillatory central differencing for hyperbolic conservation laws
- High resolution schemes for hyperbolic conservation laws
- Convergence of finite-difference schemes behind a shock front.
- Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity
- Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves
- On the construction of combined finite-difference schemes of high accuracy
- Efficient implementation of weighted ENO schemes
- Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method
- On the practical accuracy of shock-capturing schemes
- Computational Considerations for the Simulation of Shock-Induced Sound
This page was built for publication: Monotone finite-difference scheme preserving high accuracy in regions of shock influence