Deligne-Lusztig characters of the finite general linear groups and eigenvectors of Lannes' T-functor
From MaRDI portal
Publication:1711905
DOI10.1016/j.aim.2018.11.010zbMath1453.20064OpenAlexW2900772606WikidataQ128888606 ScholiaQ128888606MaRDI QIDQ1711905
Publication date: 18 January 2019
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.aim.2018.11.010
Deligne-Lusztig charactersSteinberg representationCampbell-Selick summandsinjective unstable modulesLannes' T-functor
Representation theory for linear algebraic groups (20G05) (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.) (16E40) Grothendieck groups, (K)-theory, etc. (16E20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Polynomial algebras over the Steenrod algebra
- On the classification of unstable \(H^{\ast}V\)-\(A\)-modules
- A proof of Schwartz's conjecture about the eigenvalues of Lannes' \(T\)-functor
- The Segal conjecture for elementary abelian \(p\)-groups
- Representations of finite classical groups. A Hopf algebra approach
- On function spaces whose source is the classifying space of an elementary abelian \(p\)-group
- Representations of reductive groups over finite fields
- Generic representations of the finite general linear groups and the Steenrod algebra. II
- Sur la structure des A-modules instables injectifs
- On a conjecture of Lionel Schwartz about the eigenvalues of Lannes' T-functor
- The Characters of the Finite General Linear Groups
- Prime Power Representations Of Finite Linear Groups
- Lannes' T Functor on Summands of H â (B(Z/p) s )
- On Certain Stable Wedge Summands of B(đ©/p)n+
- Divisibility of Projective Modules of Finite Chevalley Groups by the Steinberg Module
- Stable decompositions of classifying spaces of finite abelianp-groups
- Lannesâ T functor on injective unstable modules and Harish-Chandra restriction
- Characterizations of spectra with đ°-injective cohomology which satisfy the Brown-Gitler property
- Théorie de Smith algébrique et classification des $H\sp*V$-$\cal{U}$-injectifs
- Sur L'anneau De Grothendieck De La Catégorie Des Modules Instables