A product integration rule for hypersingular integrals on \((0,+\infty)\)
From MaRDI portal
Publication:1716853
DOI10.1553/ETNA_VOL50S129zbMath1415.65063OpenAlexW2911033562MaRDI QIDQ1716853
Maria Carmela De Bonis Donatella Occorsio
Publication date: 5 February 2019
Published in: ETNA. Electronic Transactions on Numerical Analysis (Search for Journal in Brave)
Full work available at URL: http://etna.mcs.kent.edu/volumes/2011-2020/vol50/abstract.php?vol=50&pages=129-143
orthogonal polynomialsapproximation by polynomialsHadamard finite part integralsproduct integration rules
Numerical methods for integral equations (65R20) Approximation by polynomials (41A10) Numerical quadrature and cubature formulas (65D32)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the simultaneous approximation of a Hilbert transform and its derivatives on the real semiaxis
- Some quadrature formulae with nonstandard weights
- The \(L^p\)-weighted Lagrange interpolation on Markov-Sonin zeros
- Numerical integration schemes for Petrov-Galerkin infinite BEM
- \(L^p\)-convergence of Lagrange interpolation on the semiaxis
- Extended Lagrange interpolation in weighted uniform norm
- Definitions, properties and applications of finite-part integrals
- Numerical evaluation of hypersingular integrals
- Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros
- Numerical computation of hypersingular integrals on the real semiaxis
- Compact numerical quadrature formulas for hypersingular integrals and integral equations
- Extended Lagrange interpolation on the real line
- Approximation of Hilbert and Hadamard transforms on \((0,+\infty)\)
- Mean convergence of an extended Lagrange interpolation process on \([0,+\infty)\)
- Numerical treatment of a class of systems of Fredholm integral equations on the real line
- On the numerical solution of singular integro-differential equations
- Some numerical methods for second-kind Fredholm integral equations on the real semiaxis
- Truncated Quadrature Rules Over $(0,\infty)$ and Nyström-Type Methods
- Error bounds for a Gauss-type quadrature rule to evaluate hypersingular integrals
This page was built for publication: A product integration rule for hypersingular integrals on \((0,+\infty)\)