Multiple Hermite polynomials and simultaneous Gaussian quadrature
DOI10.1553/etna_vol50s182zbMath1406.33009arXiv1812.01446OpenAlexW2901989310WikidataQ128576236 ScholiaQ128576236MaRDI QIDQ1716859
Anton Vuerinckx, Walter Van Assche
Publication date: 5 February 2019
Published in: ETNA. Electronic Transactions on Numerical Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1812.01446
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis (42C05) Approximate quadratures (41A55) Numerical quadrature and cubature formulas (65D32)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hermite--Padé approximation and simultaneous quadrature formulas
- Large \(n\) limit of Gaussian random matrices with external source. I
- On a class of Gauss-like quadrature rules
- Gaussian quadrature for multiple orthogonal polynomials
- Simultaneous Gaussian quadrature for Angelesco systems
- Orthogonal polynomials for exponential weights
This page was built for publication: Multiple Hermite polynomials and simultaneous Gaussian quadrature