\(\widehat{\mathscr{D}}\)-modules on rigid analytic spaces. I.
From MaRDI portal
Publication:1717247
DOI10.1515/CRELLE-2016-0016zbMath1439.14064OpenAlexW2963965782MaRDI QIDQ1717247
Konstantin Ardakov, Simon J. Wadsley
Publication date: 5 February 2019
Published in: Journal für die Reine und Angewandte Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1515/crelle-2016-0016
Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials (14F10) Rigid analytic geometry (14G22)
Related Items (10)
A Beilinson-Bernstein theorem for analytic quantum groups. I ⋮ Gelfand-Kirillov dimension and the \(p\)-adic Jacquet-Langlands correspondence ⋮ Induction equivalence for equivariant 𝒟-modules on rigid analytic spaces ⋮ Affinoid Dixmier modules and the deformed Dixmier-Moeglin equivalence ⋮ Algebraic number theory. Abstracts from the workshop held June 25--30, 2023 ⋮ Non-Archimedean geometry and applications. Abstracts from the workshop held January 30 -- February 5, 2022 ⋮ Extending meromorphic connections to coadmissible \( \mathcal{D} \)-modules ⋮ From category \(\mathcal{O}^{\infty}\) to locally analytic representations ⋮ ARITHMETIC STRUCTURES FOR DIFFERENTIAL OPERATORS ON FORMAL SCHEMES ⋮ -modules on rigid analytic spaces III: weak holonomicity and operations
Cites Work
- On irreducible representations of compact \(p\)-adic analytic groups
- Locally analytic representations and sheaves on the Bruhat-Tits building
- Relative ampleness in rigid geometry
- Formal and rigid geometry. I: Rigid spaces
- Étale cohomology for non-Archimedean analytic spaces
- Introduction to étale cohomology. Translated by Manfred Kolster
- Algebras of \(p\)-adic distributions and admissible representations
- Rigid analytic geometry and its applications
- Zariskian filtrations
- Non-Archimedean analytic geometry as relative algebraic geometry
- Theorem A und B in der nichtarchimedischen Funktionentheorie
- Rigid analytic spaces
- Locally analytic distributions and 𝑝-adic representation theory, with applications to 𝐺𝐿₂
- Analytic vectors in continuousp-adic representations
- On Non-Commutative Analytic Spaces Over Non-Archimedean Fields
- \wideparen{𝒟}-modules on rigid analytic spaces II: Kashiwara’s equivalence
- Algebraic study of systems of partial differential equations
- ${\scr D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini
- Differential Forms on General Commutative Algebras
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: \(\widehat{\mathscr{D}}\)-modules on rigid analytic spaces. I.