The exponential Diophantine equation \(\left(4 m^2 + 1\right)^x + \left(5 m^2 - 1\right)^y = (3 m)^z\)
From MaRDI portal
Publication:1724695
DOI10.1155/2014/670175zbMath1474.11100OpenAlexW1977972851WikidataQ59040437 ScholiaQ59040437MaRDI QIDQ1724695
Publication date: 14 February 2019
Published in: Abstract and Applied Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2014/670175
Related Items (3)
A parametric family of ternary purely exponential Diophantine equation $A^x+B^y=C^z$ ⋮ On the Diophantine equation (( c + 1) m 2 + 1) x + ( cm 2 ⋮ A note on the exponential Diophantine equation \((rlm^2-1)^x+(r(r-l)m^2+1)^y=(rm)^z\)
Cites Work
- Unnamed Item
- Unnamed Item
- Jeśmanowicz' conjecture on exponential Diophantine equations
- Some exponential diophantine equations. I: The equation \(D_1x^2 - D_2y^2 = \lambda k^z\)
- Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples
- Existence of primitive divisors of Lucas and Lehmer numbers
- On the system of Diophantine equations a2+b2=(m2+1)rand ax+by=(m2+1)z
- Jeśmanowicz' conjecture with congruence relations
- THE DIOPHANTINE EQUATION (2am - 1)x + (2m)y = (2am + 1)z
- Primitive Divisors of Lucas and Lehmer Sequences
- TERAI'S CONJECTURE ON EXPONENTIAL DIOPHANTINE EQUATIONS
This page was built for publication: The exponential Diophantine equation \(\left(4 m^2 + 1\right)^x + \left(5 m^2 - 1\right)^y = (3 m)^z\)