Convergence of the spectral decomposition of a function from the class \(W_{p,m}^1(G)\), \(p>1\), in the vector eigenfunctions of a differential operator of the third order
From MaRDI portal
Publication:1729641
DOI10.1007/s11253-017-1400-0zbMath1499.34435OpenAlexW2769550695MaRDI QIDQ1729641
Publication date: 27 February 2019
Published in: Ukrainian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11253-017-1400-0
Related Items (2)
Basis property of a system of eigenfunctions of a second-order differential operator with involution ⋮ Unnamed Item
Cites Work
- On an analog of the Riesz theorem and the basis property of the system of root functions of a differential operator in \(L_p\). II
- Absolute and uniform convergence of expansions in the root vector functions of the Schrödinger operator with a matrix potential
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Convergence of the spectral decomposition of a function from the class \(W_{p,m}^1(G)\), \(p>1\), in the vector eigenfunctions of a differential operator of the third order