A Voronoi-Oppenheim summation formula for totally real number fields
From MaRDI portal
Publication:1729745
DOI10.1016/j.jnt.2018.04.008zbMath1425.11185OpenAlexW2807643787MaRDI QIDQ1729745
Ehud Moshe Baruch, Debika Banerjee, Evgeny Tenetov
Publication date: 28 February 2019
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2018.04.008
Analysis on (p)-adic Lie groups (22E35) Multiplicative number theory (11N99) Totally real fields (11R80)
Related Items (2)
A Vorono\xEF–Oppenheim summation formula for number fields ⋮ Voronoi-type identity for a class of arithmetical functions via the Laplace transform
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Moments of the Riemann zeta function and Eisenstein series. I
- Automorphic distributions, \(L\)-functions, and Voronoi summation for \(\text{GL}(3)\)
- Density results for automorphic forms on Hilbert modular groups
- Bessel identities in the Waldspurger correspondence over the real numbers
- Rankin-Selberg \(L\)-functions in the level aspect.
- Automorphic forms on GL (2)
- Fourier expansion of Eisenstein series on the Hilbert modular group and Hilbert class fields
- The Selberg trace formula for 𝑃𝑆𝐿₂(𝑅)ⁿ
- On the Voronoĭ formula for GL(<i>n</i>)
- Complex analysis. Transl. from the German by Dan Fulea
This page was built for publication: A Voronoi-Oppenheim summation formula for totally real number fields