Orthogonal polynomials and connection to generalized Motzkin numbers for higher-order Euler polynomials
DOI10.1016/j.jnt.2018.11.021zbMath1444.11039OpenAlexW2907779716WikidataQ114157278 ScholiaQ114157278MaRDI QIDQ1729769
Publication date: 28 February 2019
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2018.11.021
orthogonal polynomialMeixner-Pollaczek polynomialgeneralized Motzkin numberhigher-order Euler polynomials
Bernoulli and Euler numbers and polynomials (11B68) Enumerative combinatorics (05A99) Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) (33D45)
Related Items (3)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Zagier modification of Bernoulli numbers and a polynomial extension. I
- Bernoulli and Euler numbers and orthogonal polynomials
- Catalan-like numbers and Stieltjes moment sequences
- Advanced determinant calculus
- Nombres Exponentiels Et Nombres De Bernoulli
- Hypergeometric Orthogonal Polynomials and Their q-Analogues
- Convolutions of Orthonormal Polynomials
- Catalan Numbers
- Orthogonal polynomials and operator orderings
This page was built for publication: Orthogonal polynomials and connection to generalized Motzkin numbers for higher-order Euler polynomials