On solvability of an initial-boundary value problem for a viscoelasticity model with fractional derivatives
DOI10.1134/S0037446618060101zbMath1409.76020OpenAlexW2906142853WikidataQ128695185 ScholiaQ128695185MaRDI QIDQ1731399
Viktor G. Zvyagin, Vladimir Orlov
Publication date: 13 March 2019
Published in: Siberian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s0037446618060101
weak solutioninitial-boundary value problemequation of motionfractional derivativeviscoelastic mediumanti-Zener model
PDEs in connection with fluid mechanics (35Q35) Navier-Stokes equations for incompressible viscous fluids (76D05) Viscoelastic fluids (76A10) Existence, uniqueness, and regularity theory for incompressible viscous fluids (76D03)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On solvability of some initial-boundary problems for mathematical models of the motion of nonlinearly viscous and viscoelastic fluids
- Weak solvability of a fractional Voigt viscoelasticity model
- On mathematical models of a viscoelasticity with a memory
- A note on fractional derivatives and fractional powers of operators
- Weak solvability of the generalized Voigt viscoelasticity model
- On weak solutions of a regularized model of a viscoelastic fluid
- Functional Analysis
- Реологические модели вязкоупругого тела с памятью и дифференциальные уравнения дробных осцилляторов
This page was built for publication: On solvability of an initial-boundary value problem for a viscoelasticity model with fractional derivatives