Extrapolation in grand Lebesgue spaces with \(A_\infty\) weights
DOI10.1134/S0001434618090195zbMath1414.42015MaRDI QIDQ1731493
Alexander Meskhi, Vakhtang Kokilashvili
Publication date: 13 March 2019
Published in: Mathematical Notes (Search for Journal in Brave)
grand Lebesgue spacesweighted extrapolationstrong maximal operatorsCalderón-Zygmund operators with product kernels, fractional integrals with products kernelsmultiple integral operators
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sharp weighted bounds for multiple integral operators
- Weighted extrapolation in Iwaniec-Sbordone spaces. Applications to integral operators and approximation theory
- Boundedness criteria for singular integrals in weighted Grand Lebesgue spaces
- Integral operators in non-standard function spaces. Volume 2: Variable exponent Hölder, Morrey-Campanato and Grand spaces
- Extrapolation of weights revisited: new proofs and sharp bounds
- Singular integrals on product spaces
- On weighted Lizorkin-Triebel spaces. Singular integrals, multipliers, imbedding theorems
- Lipschitz functions on spaces of homogeneous type
- Weighted Hardy spaces
- On the integrability of the Jacobian under minimal hypotheses
- Inverting the \(p\)-harmonic operator
- Duality and reflexivity in grand Lebesgue spaces
- On small Lebesgue spaces
- Extrapolation results in grand Lebesgue spaces defined on product sets
- Extrapolation from \(A_{\infty}\) weights and applications
- Sharp reverse Hölder property for \(A_\infty\) weights on spaces of homogeneous type
- Potentials with product kernels in grand Lebesgue spaces: one-weight criteria
- Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- A Description of Weights Satisfying the A ∞ Condition of Muckenhoupt
- The maximal theorem for weighted grand Lebesgue spaces
- Commutators of singular integrals on spaces of homogeneous type
This page was built for publication: Extrapolation in grand Lebesgue spaces with \(A_\infty\) weights