Some absolute properties of \(A\)-computable numberings
From MaRDI portal
Publication:1731521
DOI10.1007/S10469-018-9499-0zbMath1485.03169OpenAlexW2901753969WikidataQ128906036 ScholiaQ128906036MaRDI QIDQ1731521
Publication date: 13 March 2019
Published in: Algebra and Logic (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10469-018-9499-0
\(A\)-computable numbering\(A\)-computable friedberg numbering\(A\)-computable universal numbering\(A\)-reducibility
Related Items (3)
On \(p \)-universal and \(p \)-minimal numberings ⋮ Lattice properties of Rogers semilattices of compuatble and generalized computable families ⋮ One-element Rogers semilattices in the Ershov hierarchy
Cites Work
- Ideals without minimal elements in Rogers semilattices
- Computable single-valued numerations
- Positive numerations of families with one-valued numerations
- Families of general recursive functions with a finite number of limit points
- Computable enumerations of families of general recursive functions
- Universal generalized computable numberings and hyperimmunity
- The computable enumerations of families of general recursive functions
- A unique positive enumeration
- Generalized computable universal numberings
- Enumeration of families of general recursive functions
- Elementary Theories for Rogers Semilattices
- Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy
- Local structure of Rogers semilattices of Σn 0-computable numberings
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Some absolute properties of \(A\)-computable numberings