Higher order \(\mathcal{S}^2\)-differentiability and application to Koplienko trace formula
From MaRDI portal
Publication:1732309
DOI10.1016/j.jfa.2018.09.005OpenAlexW2890311694MaRDI QIDQ1732309
Anna Skripka, Christian Le Merdy, Pheodor A. Sukochev, Clement Coine
Publication date: 22 March 2019
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1712.10289
Perturbation theory of linear operators (47A55) Noncommutative function spaces (46L52) Transformers, preservers (linear operators on spaces of linear operators) (47B49)
Related Items (7)
Perturbation theory and higher order \(\mathcal{S}^{p}\)-differentiability of operator functions ⋮ Noncommutative \(C^k\) functions and Fréchet derivatives of operator functions ⋮ HIGHER ORDER DIFFERENTIABILITY OF OPERATOR FUNCTIONS IN SCHATTEN NORMS ⋮ Weak \((1,1)\) estimates for multiple operator integrals and generalized absolute value functions ⋮ Central and convolution Herz-Schur multipliers ⋮ Complete boundedness of multiple operator integrals ⋮ When do triple operator integrals take value in the trace class?
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Spectral shift function of higher order
- Local conditions for the existence of the spectral shift function
- An extension of the Koplienko--Neidhardt trace formulae
- Differentiation of operator functions in non-commutative \(L_{p}\)-spaces
- Trace formulae for perturbations of class \(s_m\)
- When do triple operator integrals take value in the trace class?
- Fréchet differentiability of \(\mathcal{S}^p\) norms
- Multilinear Schur multipliers and Schatten properties of operator Taylor remainders
- Multiple operator integrals and higher operator derivatives
- The Lifshitz–Krein trace formula and operator Lipschitz functions
- Taylor approximations of operator functions
- Operator Lipschitz functions
- Schur multipliers on $\mathcal{B}(L^p,L^q)$
- Multidimensional operator multipliers
- Operator Integrals, Spectral Shift, and Spectral Flow
- Higher‐order spectral shift for contractions
This page was built for publication: Higher order \(\mathcal{S}^2\)-differentiability and application to Koplienko trace formula