A classification of pseudo-parallel hypersurfaces of \(\mathbb{S}^n \times \mathbb{R}\) and \(\mathbb{H}^n \times \mathbb{R}\)
From MaRDI portal
Publication:1733244
DOI10.1016/j.difgeo.2018.09.002zbMath1410.53023OpenAlexW2897272089WikidataQ115355054 ScholiaQ115355054MaRDI QIDQ1733244
Marcos P. Tassi, Guillermo Antonio Lobos
Publication date: 21 March 2019
Published in: Differential Geometry and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.difgeo.2018.09.002
Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) (53C42) Local submanifolds (53B25)
Related Items
Biharmonic hypersurfaces in a product space Lm×R ⋮ Classification of semi-parallel hypersurfaces of the product of two spheres ⋮ Pseudo-parallel surfaces of \(\mathbb{S}_c^n \times \mathbb{R}\) and \(\mathbb{H}_c^n \times \mathbb{R}\)
Cites Work
- A Hopf differential for constant mean curvature surfaces in \(\mathbb S^2 \times \mathbb R\) and \(\mathbb H^2 \times\mathbb R\)
- On a class of hypersurfaces in \(\mathbb{S}^n\times\mathbb{R}\) and \(\mathbb{H}^n\times\mathbb{R}\)
- Parallel and semi-parallel hypersurfaces of \(\mathbb{S}^n \times \mathbb R\)
- Complete surfaces of constant curvature in \(H^{2} \times \mathbb R\) and \(S^{2} \times \mathbb R\)
- Natural intrinsic geometrical symmetries
- Semi-parallel surfaces in Euclidean space
- Structure theorems on Riemannian spaces satisfying \(R(X,Y)\cdot R=0\). II. Global versions
- Symmetric submanifolds of Euclidean space
- On symmetric submanifolds of spaces of constant curvature
- Semi-parallel hypersurfaces of a real space form
- Minimal surfaces in \(M^2\times \mathbb{R}\)
- Structure theorems on Riemannian spaces satisfying \(R(X,Y)\cdot R=0\). I: The local version
- Immersions with parallel second fundamental form
- On Ricci-pseudosymmetric hypersurfaces in spaces of constant curvature
- Hypersurfaces with constant sectional curvature of \(\mathbb S^n\times\mathbb R\) and \(\mathbb H^n\times\mathbb R\)
- Surfaces with constant curvature in \(S^{2}\times \mathbb R\) and \(H^{2}\times \mathbb R\). Height estimates and representation
- Local rigidity theorems for minimal hypersurfaces
- Pseudo-parallel submanifolds of a space form
- Geometry of Hypersurfaces
- ON EXTRINSICALLY SYMMETRIC HYPERSURFACES OF ℍn×ℝ
- Natural extrinsic geometrical symmetries — an introduction —
- Isometric immersions into $\mathbb {S}^n\times \mathbb {R}$ and $\mathbb {H}^n\times \mathbb {R}$ and applications to minimal surfaces
- Curvature properties of Cartan hypersurfaces
- Curvature properties of certain compact pseudosymmetric manifolds
- PSEUDO-PARALLEL REAL HYPERSURFACES IN COMPLEX SPACE FORMS
- Umbilical Submanifolds of Sn × R
- Submanifolds of products of space forms
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item