A note on \(q\)-difference equations for Ramanujan's integrals
DOI10.1007/S11139-017-9987-1zbMath1407.39004OpenAlexW2790139216MaRDI QIDQ1733364
Publication date: 21 March 2019
Published in: The Ramanujan Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11139-017-9987-1
generating functionRamanujan's integralAl-Salam-Carlitz polynomialsolutions of \(q\)-difference equation
Exact enumeration problems, generating functions (05A15) (q)-calculus and related topics (05A30) Binomial coefficients; factorials; (q)-identities (11B65) Basic hypergeometric functions in one variable, ({}_rphi_s) (33D15) Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) (33D45) Difference equations, scaling ((q)-differences) (39A13)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A \(q\)-extension of a partial differential equation and the Hahn polynomials
- A note on generalized \(q\)-difference equations for \(q\)-beta and Andrews-Askey integral
- Generating functions for certain q-orthogonal polynomials
- Lectures on the theory of functions of several complex variables. Notes by Raghavan Narasimhan. Reprint
- A Note onq-Integrals and Certain Generating Functions
- On the $q$-partial differential equations and $q$-series
- Twoq-difference equations andq-operator identities
- An extension of the non-terminating6φ5summation and the Askey–Wilson polynomials
- Hypergeometric Orthogonal Polynomials and Their q-Analogues
- Two Integrals of Ramanujan
- Applications of Basic Hypergeometric Functions
- The Very Well Poised 6 ψ 6
- Two expansion formulas involving the Rogers–Szegő polynomials with applications
- Some Orthogonal q‐Polynomials
This page was built for publication: A note on \(q\)-difference equations for Ramanujan's integrals