Existence and multiplicity results for Steklov problems with \(p(.)\)-growth conditions
DOI10.1007/s41980-018-0054-5zbMath1410.58003OpenAlexW2612850559WikidataQ129627877 ScholiaQ129627877MaRDI QIDQ1734077
Abdellah Zerouali, Omar Chakrone, Belhadj Karim
Publication date: 22 March 2019
Published in: Bulletin of the Iranian Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s41980-018-0054-5
variational methodsnonlinear boundary conditionelliptic problemvariable exponentscritical point theoremSteklov problem
Variational methods involving nonlinear operators (47J30) Nonlinear boundary value problems for linear elliptic equations (35J65) Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces (58E05)
Related Items
Cites Work
- Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions
- The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values
- On stationary thermo-rheological viscous flows
- On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces
- Positive periodic solutions for a system of anisotropic parabolic equations
- Electrorheological fluids: modeling and mathematical theory
- Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(\mathbb R^N\)
- Dual variational methods in critical point theory and applications
- Existence and multiplicity results for elliptic problems with \(p(\cdot)\)-growth conditions
- A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations
- Variable Exponent, Linear Growth Functionals in Image Restoration
- Multiple solutions for a class of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian problems involving concave-convex nonlinearities
- A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item